Straightforward and easy to read, DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 9th Edition, gives you a thorough overview of the topics typically taught in a first course in Differential Equations as well as an introduction to boundary-value problems and partial Differential Equations. Your study will be supported by a bounty of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and more.1. INTRODUCTION TO DIFFERENTIAL EQUATIONS. Definitions and Terminology. Initial-Value Problems. Differential Equations as Mathematical Models. Chapter 1 in Review. 2. FIRST-ORDER DIFFERENTIAL EQUATIONS. Solution Curves Without a Solution. Separable Variables. Linear Equations. Exact Equations and Integrating Factors. Solutions by Substitutions. A Numerical Method. Chapter 2 in Review. 3. MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS. Linear Models. Nonlinear Models. Modeling with Systems of First-Order Differential Equations. Chapter 3 in Review. 4. HIGHER-ORDER DIFFERENTIAL EQUATIONS. Preliminary Theory-Linear Equations. Reduction of Order. Homogeneous Linear Equations with Constant Coefficients. Undetermined Coefficients-Superposition Approach. Undetermined Coefficients-Annihilator Approach. Variation of Parameters. Cauchy-Euler Equation. Solving Systems of Linear Differential Equations by Elimination. Nonlinear Differential Equations. Chapter 4 in Review. 5. MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS. Linear Models: Initial-Value Problems. Linear Models: Boundary-Value Problems. Nonlinear Models. Chapter 5 in Review. 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Review of Power Series Solutions About Ordinary Points. Solutions About Singular Points. Special Functions. Chapter 6 in Review. 7. LAPLACE TRANSFORM. Definition of the Laplace Transform. Inverse Transform and Transforms of Derivatives. Operational Properties I. Operational Properties II. Dirac Delta Function. Systems of Linear Differential Equations. Chapter 7 il-