This book presents current theories of diffraction, imaging, and related topics based on Fourier analysis and synthesis techniques, which are essential for understanding, analyzing, and synthesizing modern imaging, optical communications and networking, as well as micro/nano systems. Applications covered include tomography; magnetic resonance imaging; synthetic aperture radar (SAR) and interferometric SAR; optical communications and networking devices; computer-generated holograms and analog holograms; and wireless systems using EM waves.Preface.
1. Diffraction, Fourier Optics and Imaging.
1.1 Introduction.
1.2 Examples of Emerging Applications with Growing Significance.
2. Linear Systems and Transforms.
2.1 Introduction.
2.2 Linear Systems and Shift Invariance.
2.3 Continuous-Space Fourier Transform.
2.4 Existence of Fourier Transform.
2.5 Properties of the Fourier Transform.
2.6 Real Fourier Transform.
2.7 Amplitude and Phase Spectra.
2.8 Hankel Transforms.
3. Fundamentals of Wave Propagation.
3.1 Introduction.
3.2 Waves.
3.3 Electromagnetic Waves.
3.4 Phasor Representation.
3.5 Wave Equations in a Charge-Free Medium.
3.6 Wave Equations in Phasor Representation in a Charge-Free Medium.
3.7 Plane EM Waves.
4. Scalar Diffraction Theory.
4.1 Introduction.
4.2 Helmholtz Equation.
4.3 Angular Spectrum of Plane Waves.
4.4 Fast Fourier Transform (FFT) Implementation of the Angular Spectrum of Plane Waves.
4.5 The Kirchofls(