Energy Transduction in Biological Membranes was primarily designed for graduate courses in bioenergetics. Not only does it discuss basic principles and concepts central to modern membrane biochemistry, biophysics and molecular biology, but also (1) the components and pathways for electron transport and hydrogen ion translocation, and (2) the utilization of electrochemical ion gradients. The book is unique in presenting a comparative treatment of respiratory and photosynthetic energy transduction, and in using protein sequence data coupled with physical concepts to discuss the mechanisms of energy transducing proteins.Energy Transduction in Biological Membranes was primarily designed for graduate courses in bioenergetics. Not only does it discuss basic principles and concepts central to modern membrane biochemistry, biophysics and molecular biology, but also (1) the components and pathways for electron transport and hydrogen ion translocation, and (2) the utilization of electrochemical ion gradients. The book is unique in presenting a comparative treatment of respiratory and photosynthetic energy transduction, and in using protein sequence data coupled with physical concepts to discuss the mechanisms of energy transducing proteins.I Principles of Bioenergetics.- 1 Thermodynamic Background.- 1.1 Introduction: The First Law of Thermodynamics.- 1.2 Reaction, Direction, Disorder: The Need for the Second Law.- 1.3 On Entropy and the Second Law of Thermodynamics.- 1.4 Maximum Work.- 1.5 Free Energy.- 1.6 Concentration Dependence of the Gibbs Free Energy.- 1.7 Free Energy Change of a Chemical Reaction.- 1.8 Temperature Dependence of Keq.- 1.9 Other Kinds of Work: Electrical, Chemical Work.- 1.10 Thermodynamics of Ion Gradients.- 1.11 Thermodynamics of $$ \Delta {\tilde \mu_} $$-Linked Active Transport.- 1.12 Thermodynamics of $$ \Delta {\tilde \mu_} $$-Linked ATP Synthesis.- 1.13 Nonequilibrium Thermodynamics.- 1.14 l“¿