This book solves the open problems in fluid flow modeling through the fractured vuggy carbonate reservoirs. Fractured vuggy carbonate reservoirs usually have complex pore structures, which contain not only matrix and fractures but also the vugs and cavities. Since the vugs and cavities are irregular in shape and vary in diameter from millimeters to meters, modeling fluid flow through fractured vuggy porous media is still a challenge. The existing modeling theory and methods are not suitable for such reservoir. It starts from the concept of discrete fracture and fracture-vug networks model, and then develops the corresponding mathematical models and numerical methods, including discrete fracture model, discrete fracture-vug model, hybrid model and multiscale models. Based on these discrete porous media models, some equivalent medium models?and methods are also discussed. All the modeling and methods shared in this book offer the key recent solutions into this area.
Introduction.- Numerical simulation of discrete fracture model.- Numerical simulation of discrete fracture-vug network model.- Numerical simulation of equivalent media model.- Numerical simulation based on mixed model.- Numerical simulation based on multi-scale finite element methods.Dr. Jun Yao, professor in School of Petroleum Engineering, China University of Petroleum (UPC), the Director of Center of Multiphase Flow in Porous Media (CMFPM). He was the Dean of School of Petroleum Engineering (2003-2013) and the Director of Science and Technology Department (2013 to present). His scientific research mainly focuses on multiphase flow in porous media, well testing and smart oilfield. He has published 8 monographs and more than 300 academic papers, over 170 of which are indexed by SCI and EI. In addition, he owns the proprietary of intellectual property rights of five softwares. He is a committee member of the Academic Degrees Committee of the State Council and specializes in subject assessls