ShopSpell

Ordering Phenomena in Rare-Earth Nickelate Heterostructures [Hardcover]

$78.99     $109.99    28% Off      (Free Shipping)
100 available
  • Category: Books (Technology & Engineering)
  • Author:  Hepting, Matthias
  • Author:  Hepting, Matthias
  • ISBN-10:  3319605305
  • ISBN-10:  3319605305
  • ISBN-13:  9783319605302
  • ISBN-13:  9783319605302
  • Publisher:  Springer
  • Publisher:  Springer
  • Binding:  Hardcover
  • Binding:  Hardcover
  • Pub Date:  01-Apr-2017
  • Pub Date:  01-Apr-2017
  • SKU:  3319605305-11-SPRI
  • SKU:  3319605305-11-SPRI
  • Item ID: 100848993
  • List Price: $109.99
  • Seller: ShopSpell
  • Ships in: 5 business days
  • Transit time: Up to 5 business days
  • Delivery by: Jan 24 to Jan 26
  • Notes: Brand New Book. Order Now.
This thesis presents an experimental study of ordering phenomena in rare-earth nickelate-based heterostructures by means of inelastic Raman light scattering and elastic resonant x-ray scattering (RXS). Further, it demonstrates that the amplitude ratio of magnetic moments at neighboring nickel sites can be accurately determined by RXS in combination with a correlated double cluster model, and controlled experimentally through structural pinning of the oxygen positions in the crystal lattice. The two key outcomes of the thesis are: (a) demonstrating full control over the charge/bond and spin order parameters in specifically designed praseodymium nickelate heterostructures and observation of a novel spin density wave phase in absence of the charge/bond order parameter, which confirms theoretical predictions of a spin density wave phase driven by spatial confinement of the conduction electrons; and (b) assessing the thickness-induced crossover between collinear and non-collinear spin structures in neodymium nickelate slabs, which is correctly predicted by drawing on density functional theory.Introduction: Transition Metal Oxides and their Heterostructures.- The Rare-earth Nickelates.- Experimental Techniques.- Tunable Order Parameters in Nickelate Heterostructures.- Complex Magnetic Order in Nickelate Slabs.This thesis presents an experimental study of ordering phenomena in rare-earth nickelate-based heterostructures by means of inelastic Raman light scattering and elastic resonant x-ray scattering (RXS). Further, it demonstrates that the amplitude ratio of magnetic moments at neighboring nickel sites can be accurately determined by RXS in combination with a correlated double cluster model, and controlled experimentally through structural pinning of the oxygen positions in the crystal lattice. The two key outcomes of the thesis are: (a) demonstratingfull control over the charge/bond and spin order parameters in specifically designed praseodymium nickelate heterostructurl³¨
Add Review