THIS VOLUME, LIKE THOSE PRIOR TO IT, FEATURES CHAPTERS BY EXPERTS IN VARIOUS FIELDS OF COMPUTATIONAL CHEMISTRY. Volume 23 COVERS LINEAR SCALING METHODS FOR QUANTUM CHEMISTRY, VARIATIONAL TRANSITION STATE THEORY, COARSE GRAIN MODELING OF POLYMERS, SUPPORT VECTOR MACHINES, CONICAL INTERSECTIONS, ANALYSIS OF INFORMATION CONTENT USING SHANNON ENTROPY, AND HISTORICAL INSIGHTS INTO HOW COMPUTING EVOLVED IN THE PHARMACEUTICAL INDUSTRY.
FROM REVIEWS OF THE SERIES
Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry.
—JOURNAL OF MOLECULAR GRAPHICS AND MODELLING
One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general).
—JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
1. Linear-Scaling Methods in Quantum Chemistry (Christian Ochsenfeld, Jörg Kussmann, and Daniel S. Lambrecht).
Introduction.
Some Basics of SCF Theory.
Direct SCF Methods and Two-Electron Integral Screening.
Schwarz Integral Estimates.
Multipole-Based Integral Estimates (MBIE).
Calculation of Integrals via Multipole Expansion.
A First Example.
Derivation of the Multipole Expansion.
The Fast Multipole Method: Breaking the Quadratic Wall.
Fast Multipole Methods for Continuous Charge Distributions.
Other Approaches.
Exchange-Typl3,