7/Synthesis of the Tables.- 7.1. Generalizations.- 7.1.1. Introduction.- 7.1.2. Review of a sequential systems general equations.- 7.1.3. Normal form of the hypotheses.- 7.2. Natural methods.- 7.2.1. Ginsburg method-first case.- 7.2.1.2. The method in the general case.- 7.2.2. Ginsburg method-second case.- 7.2.2.1. Introductory examples.- 7.2.2.2. General statement of the method.- 7.2.3. Aizermans method.- 7.2.3.1. Introductory example.- 7.2.3.2. General statement of the Aizerman method.- 7.2.3.3. Other examples of application.- 7.2.4. Asynchronous machines-Moisil-Ioanin method.- 7.3. Algebraic methods-Notion of a regular expression.- 7.3.1. Introduction.- 7.3.2. The algebra of regular expressions.- 7.4. Gloushkov method.- 7.4.1. Generalizations. Indexation of regular expressions.- 7.4.2. Examples of synthesis starting from regular expressions.- 7.4.2.1. First example.- 7.4.2.2. Second example of synthesis by the Gloushkov method.- 7.4.3. Statement of the Gloushkov method.- 7.4.4. Application of regular expression to the synthesis of asynchronous systems.- 7.4.4.1. Representation of asynchronous controls in terms of regular expressions.- 7.4.4.2. Example of synthesis of an asynchronous system.- 7.5. Conclusion.- 7.A. Brzozowski method.- 7. A.1. Basic definitions. The derivative of a regular expression with respect to a sequence of unity length.- 7. A.2. Use of the derivative to obtain the table of a machine.- Exercises.- 8/Reduction of the Number of States in a Table.- 8.1. Introduction-Statement of the problem.- 8.2. Equivalence of states.- 8.3. Reduction of complete tables.- 8.3.1. Construction of the table of equivalent pairs.- 8.3.2. Grouping of equivalent pairs.- 8.3.3. Formation of the minimal flow table.- 8.3.4. Another example of the minimization of a table.- 8.4. Reduction of incomplete tables.- 8.4.1. Basic definitions.- 8.4.2. Determination of compatible pairs.- 8.4.3. Grouping compatible terms.- 8.4.4. Choice of the M.C. and construction of the minimall³.